Mostrar el registro sencillo

dc.contributor.authorAbejón Elías, Ricardo 
dc.contributor.authorCasado Coterillo, Clara 
dc.contributor.authorGarea Vázquez, Aurora 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-16T16:14:44Z
dc.date.available2022-11-16T16:14:44Z
dc.date.issued2022-06-06
dc.identifier.issn0888-5885
dc.identifier.issn1520-5045
dc.identifier.otherPID2019-108136RB-C31es_ES
dc.identifier.otherEIN2020-112319es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26475
dc.description.abstractWithin the current climate emergency framework and in order to avoid the most severe consequences of global warming, membrane separation processes have become critical for the implementation of carbon capture, storage, and utilization technologies. Mixtures of CO2 and CH4 are relevant energy resources, and the design of innovative membranes specifically designed to improve their separation is a hot topic. This work investigated the potential of modified polydimethylsiloxane and ionic liquid-chitosan composite membranes for separation of CO2 and CH4 mixtures from different sources, such as biogas upgrading, natural gas sweetening, or CO2 enhanced oil recovery. The techno-economic optimization of multistage processes at a real industrial scale was carried out, paying special attention to the identification of the optimal configuration of the hollow fiber modules and the selection of the best membrane scheme. The results demonstrated that a high initial content of CH4 in the feed stream (like in the case of natural gas sweetening) might imply a great challenge for the separation performance, where only membranes with exceptional selectivity might achieve the requirements in a two-stage process. The effective lifetime of the membranes is a key parameter for the successful implementation of innovative membranes in order to avoid severe economic penalties due to excessively frequent membrane replacement. The scale of the process had a great influence on the economic competitiveness of the process, but large-scale installations can operate under competitive conditions with total costs below 0.050 US$ per m3 STP of treated feed gas.es_ES
dc.description.sponsorshipThis work was funded by the Spanish Ministry of Science and Innovation Project PID2019-108136RB-C31/AEI/10.13039/501100011033. MCIN/AEI/10.13039/501100011033 and the “European Union NextGeneration EU/PRTR” are also thanked for the grant EIN2020-112319/AEI/10.13039/501100011033.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIndustrial and Engineering Chemistry Research, 2022, 61(23), 8149-8165es_ES
dc.titleTechno-economic optimization of multistage membrane processes with innovative hollow fiber modules for the production of high-purity CO2 and CH4 from different sourceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.iecr.2c01138es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.iecr.2c01138
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 International