Mostrar el registro sencillo

dc.contributor.authorGarcía Merino, Belén 
dc.contributor.authorBringas Elizalde, Eugenio 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-16T09:18:11Z
dc.date.available2024-11-01T00:18:27Z
dc.date.issued2022-10
dc.identifier.issn2213-3437
dc.identifier.issn2213-2929
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26466
dc.description.abstractNowadays, the design of efficient technologies for the detection and separation of environmental pollutants from aqueous solutions continues to be a challenge to the industrial sector. The present work proposes a robust microfluidic system for the continuous, rapid and effective testing of selective capture agents of aqueous pollutants based on the use of magnetic nanoparticles, MNPs. These are found of special interest due to their high specific surface area, easy functionalization and superparamagnetic behavior. In this work, MNPs with an average diameter of 8.8 ± 1.3 nm and amino-functionalization were obtained following a novel continuous synthesis that facilitated the control of the particles properties. The microfluidic capture of Cr(VI) from aqueous solutions was assessed as representative case study; followed by the successful regeneration of loaded MNPs. The obtained results prove the advantages of the proposed system: i) continuous synthesis of functionalized MNPs with rigorous size control, ii) selective and fast capture of the target compound depending on the particle?s functionalization and large surface area, respectively, ii) continuous operation that facilitates process scale-up, iii) easy regeneration of the functional materials, and iv) magnetic separation of MNPs from fluid media if needed. Furthermore, the calculated Cr(VI) maximum uptake is higher than obtained values for non-functionalized MNPs and is in the range of previously reported data for ion exchange resins, with the additional advantages already mentioned. Thus, this work constitutes a step forward in the methodological design of advanced systems with detection or separation purposes and can be extended to a wide variety of pollutants.es_ES
dc.description.sponsorshipFinancial support from the Spanish Ministry of Science and Innovation under project RTI2018–093310-B-I00 (MCI/AEI/FEDER, UE) is gratefully acknowledged. Belén García-Merino also thank the FPI research grant PRE2019–089339.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Environmental Chemical Engineering, 2022, 10(5), 108417es_ES
dc.subject.otherContinuous synthesises_ES
dc.subject.otherFunctionalized magnetic nanoparticles (MNPs)es_ES
dc.subject.otherAqueous pollutantses_ES
dc.subject.otherHexavalent chromium (Cr(VI))es_ES
dc.subject.otherMicrofluidic capture and regenerationes_ES
dc.titleRobust system for the regenerative capture of aqueous pollutants with continuously synthesized and functionalized magnetic nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jece.2022.108417es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093310-B-I00/ES/SEPARACIONES MICROFLUIDICAS DE ELEVADO RENDIMIENTO. RETOS Y OPORTUNIDADES/es_ES
dc.identifier.DOI10.1016/j.jece.2022.108417
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license