Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorNazarov, Sergei A.
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-11-15T14:00:54Z
dc.date.available2023-01-31T00:30:20Z
dc.date.issued2021-01
dc.identifier.issn1090-2732
dc.identifier.issn0022-0396
dc.identifier.otherPGC2018-098178-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/26456
dc.description.abstractWe consider a Dirichlet spectral problem for a second order differential operator, with piecewise constant coefficients, in a domain [Omega] in the plane R2. Here [ ], where [Omega] is a fixed bounded domain with boundary , is a curvilinear band of width O(epsilon), and . The density and stiffness constants are of order mt and t respectively in this band, while they are of order 1 in ; t1, m>2, and is a small positive parameter. We address the asymptotic behavior, as 0, for the eigenvalues and the corresponding eigenfunctions. In particular, we show certain localization effects for eigenfunctions associated with low frequencies. This is deeply involved with the extrema of the curvature ofes_ES
dc.format.extent36 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.sourceJournal of differential equations Volume , 2021, 270, 1160-1195es_ES
dc.subject.otherStiff Problemes_ES
dc.subject.otherAsymptotic Analysises_ES
dc.subject.otherSpectral Analysises_ES
dc.subject.otherLocalized Eigenfunctionses_ES
dc.titleLocalization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bandses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jde.2020.09.011es_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NoDerivatives 4.0 International