Boundary homogenization with large reaction terms on a strainer-type wall
Ver/ Abrir
Identificadores
URI: https://hdl.handle.net/10902/26346DOI: 10.3390/w5010067
ISSN: 1420-9039
ISSN: 0044-2275
Registro completo
Mostrar el registro completo DCFecha
2022-12Derechos
© 2022 The Authors
Publicado en
Zeitschrift fur Angewandte Mathematik und Physik 2022, 73(6), 234
Editorial
Springer
Enlace a la publicación
Palabras clave
Boundary homogenization
Local problems
Extended capacity
Critical relations
Laplace operator
Resumen/Abstract
ABSTRACT: We consider a homogenization problem for the Laplace operator posed in a bounded domain of the upper halfspace, a part of its boundary being in contact with the plane {x3 = 0}. On this part, the boundary conditions alternate from Neumann to nonlinear-Robin, being of Dirichlet type outside. The nonlinear-Robin boundary conditions are imposed on small regions periodically placed along the plane and contain a Robin parameter that can be very large. We provide all the possible homogenized problems, depending on the relations between the three parameters: period ε, size of the small regions rε and Robin parameter β(ε). In particular, we address the convergence, as ε tends to zero, of the solutions for the critical size of the small regions rε = O(ε2). For certain β(ε), a nonlinear capacity term arises in the strange term which depends on the macroscopic variable and allows us to extend the usual capacity definition to semilinear boundary conditions.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]