Mostrar el registro sencillo

dc.contributor.advisorRobla Gómez, María Sandra 
dc.contributor.authorOrdinskiy, Sergey
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-09-29T08:45:10Z
dc.date.available2022-09-29T08:45:10Z
dc.date.issued2022-09-07
dc.identifier.urihttps://hdl.handle.net/10902/26054
dc.description.abstractThis graduation project presents a machine learning model that performs multiple object tracking (MOT) using visual-based tracking-by-detection approach. It uses state of the art realtime algorithms: YOLO (You Only Look Once) for detection and DeepSORT (Deep Simple Online and Realtime Tracking) for tracking. The model has been developed in Python in Google Colab environment and evaluated using KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) 2D MOT benchmark. The project contextualizes development of the model in the field of autonomous vehicles.es_ES
dc.format.extent56 p.es_ES
dc.language.isoenges_ES
dc.rights© Sergey Ordinskiyes_ES
dc.titleDesarrollo de un modelo de aprendizaje automático para el seguimiento de objetoses_ES
dc.title.alternativeDevelopment of a machine learning model for object trackinges_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsrestrictedAccesses_ES
dc.description.degreeGrado en Ingeniería en Electrónica Industrial y Automáticaes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo