• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Académico
    • Facultad de Medicina
    • Máster Universitario en Biología Molecular y Biomedicina
    • M1622 Trabajos académicos
    • Ver ítem
    •   UCrea
    • UCrea Académico
    • Facultad de Medicina
    • Máster Universitario en Biología Molecular y Biomedicina
    • M1622 Trabajos académicos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanoparticles design for neuron targeting

    Ver/Abrir
    2022_RivillaQuijiaC.pdf (1.381Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/26033
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Rivilla Quijia, Cristian Paul
    Fecha
    2022-06-17
    Director/es
    García-Hevia, Lorena
    Casafont Parra, ÍñigoAutoridad Unican
    Derechos
    ©Cristian Paul Rivilla Quijia
    Resumen/Abstract
    ABSTRACT : Neurodegenerative diseases are a group of progressive and degenerative disorders that affects the nervous system and causes various symptoms in patients with these pathologies. Unfortunately, there is no cure for these diseases, so treatment aims to alleviate symptoms, prevent complications, and slow the progression. In this research, we propose a carrier nanosystem that uses spherical silica nanoparticles functionalized with the toxin ligand domain derived from Clostridium botulinum toxin (BTXC), which binds with high affinity with the SV2 motoneuron´s receptor, so this nanosystem could reach the nervous system through retro-axonal transport Silica nanoparticles were synthesized through the Stöber method, obtaining negative charge particles that will bind electrostatically with the histidine tails (positive charge) of the toxin ligand domain. BTXC was overexpressed, extracted, and purified from E. coli. Nanoparticles loaded with FITC were functionalized and added to motoneurons like cell cultures (NSC34) to determine if the toxin ligand domain gives the nanoparticles specificity for neurons. Flow cytometry demonstrated that the BTXC ligand increased the affinity of nanoparticles for motoneurons-like cells. In addition, to evaluate the gene delivery ability of this nanosystem, nanoparticles that contain the DNA were synthesized, then functionalized with BTXC and added to NSC34 cells, the gene expression was evaluated by fluorescence microscopy and flow cytometry. These results indicate that BTXC functionalization gives these carrier nanosystems affinity for motoneurons-like cell cultures. Furthermore, they have shown the ability to encapsulate biological material inside, which would be an important gene therapy for future neurodegenerative disease treatment.
    Colecciones a las que pertenece
    • M1622 Trabajos académicos [136]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España