Mostrar el registro sencillo

dc.contributor.authorHuber, Birkett
dc.contributor.authorRambau, Jörg
dc.contributor.authorSantos, Francisco 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-07-03T11:59:03Z
dc.date.available2013-07-03T11:59:03Z
dc.date.issued2000-01
dc.identifier.issn1435-9855
dc.identifier.issn1435-9863
dc.identifier.urihttp://hdl.handle.net/10902/2585
dc.description.abstractIn 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimination theory: he established an order-preserving bijection between the posets of coherent mixed subdivisions of a Minkowski sum ?1+...+? r of point configurations and of coherent polyhedral subdivisions of the associated Cayley embedding ?(?1,...,? r ). In this paper we extend this correspondence in a natural way to cover also non-coherent subdivisions. As an application, we show that the Cayley Trick combined with results of Santos on subdivisions of Lawrence polytopes provides a new independent proof of the Bohne-Dress theorem on zonotopal tilings. This application uses a combinatorial characterization of lifting subdivisions, also originally proved by Santos.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherEUROPEAN MATHEMATICAL SOCIETYes_ES
dc.rights©Springer-Verlag & EMS 2000es_ES
dc.sourceJournal of the European Mathematical Society,Volume 2, Issue 2 , pp 179-198 (2000)es_ES
dc.subject.otherPolyhedral subdivisiones_ES
dc.subject.otherFiber polytopees_ES
dc.subject.otherMixed subdivisiones_ES
dc.subject.otherLifting subdivisiones_ES
dc.subject.otherMinkowski sumes_ES
dc.subject.otherCayley Trickes_ES
dc.subject.otherBohne-Dress Theoremes_ES
dc.titleThe Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilingses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1007/s100970050003es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s100970050003
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo