The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2000-01Derechos
©Springer-Verlag & EMS 2000
Publicado en
Journal of the European Mathematical Society,Volume 2, Issue 2 , pp 179-198 (2000)
Editorial
EUROPEAN MATHEMATICAL SOCIETY
Enlace a la publicación
Palabras clave
Polyhedral subdivision
Fiber polytope
Mixed subdivision
Lifting subdivision
Minkowski sum
Cayley Trick
Bohne-Dress Theorem
Resumen/Abstract
In 1994, Sturmfels gave a polyhedral version of the Cayley Trick of elimination theory: he established an order-preserving bijection between the posets of coherent mixed subdivisions of a Minkowski sum ?1+...+? r of point configurations and of coherent polyhedral subdivisions of the associated Cayley embedding ?(?1,...,? r ). In this paper we extend this correspondence in a natural way to cover also non-coherent subdivisions. As an application, we show that the Cayley Trick combined with results of Santos on subdivisions of Lawrence polytopes provides a new independent proof of the Bohne-Dress theorem on zonotopal tilings. This application uses a combinatorial characterization of lifting subdivisions, also originally proved by Santos.
Colecciones a las que pertenece
- D21 Artículos [417]