• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced tumor contrast during breast lumpectomy provided by independent component analysis of localized reflectance measures

    Ver/Abrir
    Enhanced tumor.pdf (1.837Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/2576
    DOI: 10.1117/12.909348
    ISSN: 1996-756X
    ISSN: 0277-786X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Eguizabal Aguado, AlmaAutoridad Unican; Laughney, Ashley M.; García Allende, Pilar Beatriz; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian William; López Higuera, José MiguelAutoridad Unican; Conde Portilla, Olga MaríaAutoridad Unican
    Fecha
    2012-02-09
    Derechos
    © 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2012, vol. 8230, 823010
    Biomedical Applications of Light Scattering VI, San Francisco (CA), 2012
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/12.909348
    Palabras clave
    Breast tumor
    Optical reflectance
    Optical scattering parameters
    Principal component analysis (PCA)
    Independent component analysis (ICA)
    Resumen/Abstract
    A spectral analysis technique to enhance tumor contrast during breast conserving surgery is proposed. A set of 29 surgically-excised breast tissues have been imaged in local reflectance geometry. Measures of broadband reflectance are directly analyzed using Principle Component Analysis (PCA), on a per sample basis, to extract areas of maximal spectral variation. A dynamic selection threshold has been applied to obtain the final number of principal components, accounting for inter-patient variability. A blind separation technique based on Independent Component Analysis (ICA) is then applied to extract diagnostically powerful results. ICA application reveals that the behavior of one independent component highly correlates with the pathologic diagnosis and it surpasses the contrast obtained using empirical models. Moreover, blind detection characteristics (no training, no comparisons with training reference data) and no need for parameterization makes the automated diagnosis simple and time efficient, favoring its translation to the clinical practice. Correlation coefficient with model-based results up to 0.91 has been achieved.
    Colecciones a las que pertenece
    • D50 Congresos [464]
    • D50 Proyectos de Investigación [404]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España