Mostrar el registro sencillo

dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorAbarca González, José Antonio
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-08-04T15:28:07Z
dc.date.available2022-08-04T15:28:07Z
dc.date.issued2022-08
dc.identifier.issn2214-7144
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.otherPDC2021-120786-I00es_ES
dc.identifier.otherPLEC2021- 007718es_ES
dc.identifier.urihttp://hdl.handle.net/10902/25463
dc.description.abstractSalinity gradient power (SGP), has gained attention in last years, due to its numerous advantages as renewable and continuous source of energy. Furthermore, the possibility of deploying this new source of green energy in coastal wastewater treatment plants (WWTPs) offers an attractive alternative to advance the energy sustainability in these installations while contributing to increase the prospects for water reclamation. As part of a global project that integrates the recovery of SGP through reverse electrodialysis within a water reclamation process, we report the analysis of the influence of the main components of a reversal electrodialysis (RED) stack, membranes, and spacers, on the recovery of energy. Additionally, the optimal number of cell pairs and velocity of the water streams is determined to maximize the gross power density. The study is carried out with model waters with a sodium chloride concentration of 0.5 M (seawater) and 0.02 M (close to WWTP effluents) as high and low concentration solutions respectively, in a RED stack with 3 to 20 ion exchange membrane pairs. The results reveal that membrane thickness exerts a more decisive influence than the spacers thickness. Power density values as high as 1.59 W·m−2 and 1.77 W·m−2 have been obtained using membranes of 50 μm thickness and spacers of 270 and 155 μm thickness, respectively. The information here reported helps in the decision-making for the proper design of the membrane stack, making a step forward to facilitate the integration of SGP recovery within water reclamation processes, reducing fossil fuel dependence in WWTPs.es_ES
dc.description.sponsorshipThis research has been funded by the LIFE programme (LIFE19 ENV/ES/000143) and the Spanish Ministry of Science and Innovation (RTI2018-093310-B-I00, PDC2021-120786-I00 and PLEC2021-007718). Besides, this research is also being supported by the Project “HYLANTIC” — EAPA_204/2016, which is co-financed by the European Regional Development Fund in the frame-work of the Interreg Atlantic program.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Water Process Engineering, 2022, 48, 102816es_ES
dc.subject.otherSalinity gradient power (SGP)es_ES
dc.subject.otherRED technologyes_ES
dc.subject.otherGross power densityes_ES
dc.subject.otherWater sustainabilityes_ES
dc.titleOptimum recovery of saline gradient power using reversal electrodialysis: influence of the stack componentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jwpe.2022.102816es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jwpe.2022.102816
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International