Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorKrishnaswamy, Venkataramanan
dc.contributor.authorHoopes, P. Jack
dc.contributor.authorSamkoe, Kimberley S.
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorPogue, Brian William
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-28T12:25:29Z
dc.date.available2013-06-28T12:25:29Z
dc.date.issued2009-05
dc.identifier.issn1560-2281
dc.identifier.issn1083-3668
dc.identifier.urihttp://hdl.handle.net/10902/2541
dc.description.abstractAn automated algorithm and methodology is presented to identify tumor-tissue morphologies based on broadband scatter data measured by raster scan imaging of the samples. A quasi-confocal reflectance imaging system was used to directly measure the tissue scatter reflectance in situ, and the spectrum was used to identify the scattering power, amplitude, and total wavelength-integrated intensity. Pancreatic tumor and normal samples were characterized using the instrument, and subtle changes in the scatter signal were encountered within regions of each sample. Discrimination between normal versus tumor tissue was readily performed using a K-nearest neighbor classifier algorithm. A similar approach worked for regions of tumor morphology when statistical preprocessing of the scattering parameters was included to create additional data features. This type of automated interpretation methodology can provide a tool for guiding surgical resection in areas where microscopy imaging cannot be realized efficiently by the surgeon. In addition, the results indicate important design changes for future systems.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2009 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceJournal of Biomedical Optics, 2009, 14(3), 034034es_ES
dc.subject.otherAutomatic classificationes_ES
dc.subject.otherTumores_ES
dc.subject.otherNecrosises_ES
dc.subject.otherConfocal reflectance imaginges_ES
dc.subject.otherScatteres_ES
dc.subject.otherFeature extractiones_ES
dc.subject.otherK-nearest neighbors (kNN)es_ES
dc.titleAutomated identification of tumor microscopic morphology based on macroscopically measured scatter signatureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1117/1.3155512es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/1.3155512
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo