• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures

    Ver/Abrir
    Automated identifica ... (1.173Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/2541
    DOI: 10.1117/1.3155512
    ISSN: 1560-2281
    ISSN: 1083-3668
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Allende, Pilar Beatriz; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Samkoe, Kimberley S.; Conde Portilla, Olga MaríaAutoridad Unican; Pogue, Brian William
    Fecha
    2009-05
    Derechos
    © 2009 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Journal of Biomedical Optics, 2009, 14(3), 034034
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/1.3155512
    Palabras clave
    Automatic classification
    Tumor
    Necrosis
    Confocal reflectance imaging
    Scatter
    Feature extraction
    K-nearest neighbors (kNN)
    Resumen/Abstract
    An automated algorithm and methodology is presented to identify tumor-tissue morphologies based on broadband scatter data measured by raster scan imaging of the samples. A quasi-confocal reflectance imaging system was used to directly measure the tissue scatter reflectance in situ, and the spectrum was used to identify the scattering power, amplitude, and total wavelength-integrated intensity. Pancreatic tumor and normal samples were characterized using the instrument, and subtle changes in the scatter signal were encountered within regions of each sample. Discrimination between normal versus tumor tissue was readily performed using a K-nearest neighbor classifier algorithm. A similar approach worked for regions of tumor morphology when statistical preprocessing of the scattering parameters was included to create additional data features. This type of automated interpretation methodology can provide a tool for guiding surgical resection in areas where microscopy imaging cannot be realized efficiently by the surgeon. In addition, the results indicate important design changes for future systems.
    Colecciones a las que pertenece
    • D50 Artículos [312]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España