Arc welding quality monitoring by means of near infrared imaging spectroscopy
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/2539DOI: 10.1117/12.770246
ISSN: 1996-756X
ISSN: 0277-786X
Registro completo
Mostrar el registro completo DCAutoría
García Allende, Pilar Beatriz; Mirapeix Serrano, Jesús María



Fecha
2008-03-17Derechos
© 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Publicado en
Proceedings of SPIE, 2008, vol. 6939, 69390Q
Thermosense XXX, Orlando (FL), 2008
Editorial
SPIE Society of Photo-Optical Instrumentation Engineers
Enlace a la publicación
Palabras clave
NIR imaging spectroscopy
Plasma emission
Arc-welding
On-line quality monitoring
Resumen/Abstract
The search for an efficient on-line monitoring system focused on the real-time analysis of the welding quality is an active area of research, mainly due to the widespread use of both arc and laser welding processes in relevant industrial scenarios such as aeronautics or nuclear. In this work, an improvement in the performance of a previously designed monitor system is presented. This improvement is accomplished by the employment of a dual spatial-spectral technique, namely imaging spectroscopy. This technique allows the simultaneous determination of the optical spectrum components and the spatial location of an object in a surface. In this way, the spatially characterization of the plasma emitted during a tungsten inert gas (TIG) welding is performed. The main advantage of this technique is that the spectra of all the points in the line of vision are measured at the same time. Not only are all the spectra captured simultaneously, but they are also processed as a batch, allowing the investigation of the welding quality. Moreover, imaging spectroscopy provides the desired real-time operation. To simultaneously acquire the information of both domains, spectral and spatial, a passive Prism-Grating-Prism (PGP) device can be used. In this paper the plasma spectra is captured during the welding test by means of a near infrared imaging spectroscopic system which consists of input optics, an imaging spectrograph and a monochrome camera. Technique features regarding on-line welding quality monitoring are discussed by means of several experimental welding tests.
Colecciones a las que pertenece
- D50 Congresos [464]