• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Informática y Electrónica
    • D30 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Informática y Electrónica
    • D30 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Knowledge Base for Enabling Non-expert Users to Apply Data Mining Algorithms

    Ver/Abrir
    DevelopmentKnowledge ... (1.718Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/25309
    ISSN: 1613-0073
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Espinosa, Roberto; García Saiz, DiegoAutoridad Unican; Zorrilla Pantaleón, Marta E.Autoridad Unican; Zubcoff, Jose Jacobo; Mazón, Jose-Norberto
    Fecha
    2013
    Derechos
    ©The authors
    Publicado en
    CEUR Workshop Proceedings, 2013, 1027, 46-61
    Editorial
    R. Piskac c/o Redaktion Sun SITE Informatik V RWTH Aachen
    Palabras clave
    Knowledge base
    Data mining
    Recommenders
    Meta-learning
    Model-driven development
    Resumen/Abstract
    Non-expert users find complex to gain richer insights into the increasingly amount of available data. Advanced data analysis techniques, sucas data mining, are difficult to apply due to the fact that (i) a great number of data mining algorithms can be applied to solve the same problem, and (ii) correctly applying data mining techniques always requires dealing with the data quality of sources. Therefore, these non-expert users must be informed about what data mining techniques and parameters-setting are appropriate for being applied to their sources according to their data quality. To this aim, we propose the construction of an automatic recommender built using a knowledge base which contains information about previously solved data mining tasks. The construction of the knowledge base is a critical step in the recommender design. We propose a model-driven approach for the development of a knowledge base, which is automatically fed by a Taverna workflow. Experiments are conducted to show the feasibility of our knowledge base as a resource in an online educational platform, in which instructors of e-learning courses are non-expert data miners who need to discover how their courses are used in order to make informed decisions to improve them.
    Colecciones a las que pertenece
    • D30 Congresos [57]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España