Mostrar el registro sencillo

dc.contributor.authorLegasa Ríos, Mikel Néstor 
dc.contributor.authorGarcía Manzanas, Rodrigo 
dc.contributor.authorCalviño Martínez, Aida 
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-07-06T11:47:54Z
dc.date.available2022-07-06T11:47:54Z
dc.date.issued2022-03-21
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.otherCGL2015-66583-R, MINECO/FEDERes_ES
dc.identifier.otherPID2020-116595RB-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/25264
dc.description.abstractABSTRACT: This work presents a comprehensive assessment of the suitability of random forests, a well-known machine learning technique, for the statistical downscaling of precipitation. Building on the experimental and validation framework proposed in the Experiment 1 of the COST action VALUE-the largest, most exhaustive intercomparison study of statistical downscaling methods to date-we introduce and thoroughly analyze a posteriori random forests (AP-RFs), which use all the information contained in the leaves to reliably predict the shape and scale parameters of the gamma probability distribution of precipitation on wet days. Therefore, as opposed to traditional random forests, which typically provide deterministic predictions, our AP-RFs allow realistic stochastic precipitation samples to be generated for wet days. Indeed, as compared to one particular implementation of a generalized linear model that exhibited an overall good performance in VALUE, our AP-RFs yield better distributional similarity with observations without loss of predictive power. Noteworthy, the new methodology proposed in this paper has substantial potential for hydrologists and other impact communities which are in need of local-scale, reliable stochastic climate information.es_ES
dc.description.sponsorshipThe authors would like to acknowledge the projects MULTI-SDM (CGL2015-66583-R, MINECO/FEDER); IS-ENES3, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement ID 824084 (https://is.enes.org) and Contribución a la nueva generación de proyecciones climáticas regionales de CORDEX mediante técnicas dinámicas y estadísticas (CORDyS):PID2020-116595RB-I00, funded by the Agencia Estatal de Investigación of the Spanish Government.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceWater Resources Research, 2022, 58(4), e2021WR030272es_ES
dc.titleA Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/824084/EU/Infrastructure for the European Network for Earth System modelling - Phase 3/IS-ENES3/es_ES
dc.identifier.DOI10.1029/2021WR030272
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International