Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorKrishnaswamy, Venkataramanan
dc.contributor.authorSamkoe, Kimberley S.
dc.contributor.authorHoopes, P. Jack
dc.contributor.authorPogue, Brian William
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-27T06:57:43Z
dc.date.available2013-06-27T06:57:43Z
dc.date.issued2009-07-07
dc.identifier.issn1996-756X
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/10902/2524
dc.description.abstractAn automated algorithm and methodology is presented to pathologically classify the scattering changes encountered in the raster scanning of normal and tumor pancreatic tissues using microsampling reflectance spectroscopy. A quasiconfocal reflectance imaging system was used to directly measure the tissue scatter reflectance in situ, and the spectrum was used to identify the scattering power, amplitude and total wavelength-integrated intensity. Pancreatic tumor and normal samples were characterized using the instrument and subtle changes in the scatter signal were encountered within regions of each sample. Discrimination between normal vs. tumor tissue was readily performed using an Artificial Neural Network (ANN) classifier algorithm. A similar approach has worked also for regions of tumor morphology when statistical pre-processing of the scattering parameters was included to create additional data features. This automated interpretation methodology can provide a tool for guiding surgical resection in areas where microscopy imaging do not reach enough contrast to assist the surgeon.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2009 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2009, vol. 7368, 73681Ces_ES
dc.sourceClinical and Biomedical Spectroscopy, Munich, 2009es_ES
dc.subject.otherTumores_ES
dc.subject.otherNecrosises_ES
dc.subject.otherConfocal reflectance imaginges_ES
dc.subject.otherFeature extractiones_ES
dc.subject.otherAutomatic classificationes_ES
dc.subject.otherArtificial neural networkses_ES
dc.titleAutomated interpretation of scatter signatures aimed at tissue morphology identificationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1117/12.831561es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/12.831561
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo