Model complexity control in straight line program genetic programming
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2013Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International
Publicado en
IJCCI 2013: Proceedings of the 5th International Joint Conference on Computational Intelligence, September 20-22, 2013, in Vilamoura, Portugal. Setúbal: ScitePress Science and Technology Publications Lda, 2013
Editorial
ScitePress, Science and Technology Publications, Lda
Enlace a la publicación
Palabras clave
Genetic programming
Straight line program
Pfaffian operator
Symbolic regression
Resumen/Abstract
In this paper we propose a tool for controlling the complexity of Genetic Programming models. The tool is supported by the theory of Vapnik-Chervonekis dimension (VCD) and is combined with a novel representation of models named straight line program. Experimental results, implemented on conventional algebraic structures (such as polynomials) and real problems, show that the empirical risk, penalized by suitable upper
bounds for the Vapnik-Chervonenkis dimension, gives a generalization error smaller than the use of statistical conventional techniques such as Bayesian or Akaike information criteria.
Colecciones a las que pertenece
- D21 Congresos [36]
- D21 Proyectos de Investigación [326]