Using cmb polarization to constrain the anomalous nature of the cold spot with an incomplete-sky coverage
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Fernández Cobos, Raúl


Fecha
2013-09-01Derechos
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Publicado en
Monthly Notices of the Royal Astronomical Society Volume 435, Issue 4, Pages 3096-3102
Editorial
Oxford University Press
Enlace a la publicación
Palabras clave
Methods: data analysis
Cosmic background radiation
Resumen/Abstract
Recent results of the ESA Planck satellite have confirmed the existence of some anomalies in the statistical distribution of the cosmic microwave background (CMB) anisotropies. One of the most intriguing anomalies is the cold spot, first detected in the Wilkinson Microwave Anisotropy Probe (WMAP) data by Vielva et al. In a later paper, Vielva et al. (2011) developed a method to probe the anomalous nature of the cold spot by using the cross-correlation of temperature and polarization of the CMB fluctuations. Whereas this work was built under the assumption of analysing full-sky data, in this paper we extend such approach to deal with realistic data sets with a partial-sky coverage. In particular, we exploit the radial and tangential polarization patterns around temperature spots. We explore the capacity of the method to distinguish between a standard Gaussian CMB scenario and an alternative one, in which the cold spot arises from a physical process that does not present correlated polarization features (e.g. topological defects), as a function of the instrumental-noise level. Moreover, we consider more in detail the case of an ideal noise-free experiment and the ones with the expected instrumental-noise levels in QUIJOTE and Planck experiments. We also present an application to the 9-year WMAP data, without being able to obtain firm conclusions, with a significance level of 32 per cent. In the ideal case, the alternative scenario could be rejected at a significance level of around 1 per cent, whereas for expected noise levels of QUIJOTE and Planck experiments the corresponding significance levels are 1.5 and 7.4 per cent, respectively.
Colecciones a las que pertenece
- D15 Artículos [846]
- D15 Proyectos de Investigación [161]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]