Mostrar el registro sencillo

dc.contributor.authorMoral Arce, Ignacio
dc.contributor.authorHeras Pérez, Antonio de las 
dc.contributor.authorSperlich, Stefan 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-20T07:42:26Z
dc.date.available2022-06-20T07:42:26Z
dc.date.issued2019
dc.identifier.issn2695-9070
dc.identifier.urihttp://hdl.handle.net/10902/25133
dc.description.abstractFor the studies of wealth, inequality and poverty, the analysis of income distribution of the individuals is a crucial issue. In practice, however, only aggregated data are available, either in groups or as a few quantiles of the distribution. To perform counterfactual exercises, it is desirable to generate samples of micro income data corresponding to the same population structure. This method serves also for the imputation of income densities corresponding to the observed grouped data. This work introduces a method of density estimation from grouped data. Small sample properties and two empirical examples are delivered.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherInstituto Nacional de Estadísticaes_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceSpanish Journal of Statistics, 2019, 1(1), 13-29es_ES
dc.subject.otherIncome distributiones_ES
dc.subject.otherGrouped dataes_ES
dc.subject.otherMicro simulationes_ES
dc.subject.otherInequalityes_ES
dc.subject.otherNonparametric density estimationes_ES
dc.titleRecovering income distributions from aggregated data via micro-simulationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.37830/SJS.2019.1.03es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.37830/SJS.2019.1.03
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España