Mostrar el registro sencillo

dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorFister, Iztok
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorFister, Iztok, Jr.
dc.contributor.authorGómez Jáuregui, Valentín 
dc.contributor.authorManchado del Val, Cristina 
dc.contributor.authorOtero González, César Antonio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-16T07:19:21Z
dc.date.available2022-06-16T07:19:21Z
dc.date.issued2022-03-29
dc.identifier.issn2227-7390
dc.identifier.otherTIN2017-89275-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/25114
dc.description.abstractThis work addresses the IFS-based image reconstruction problem for binary images. Given a binary image as the input, the goal is to obtain all the parameters of an iterated function system whose attractor approximates the input image accurately; the quality of this approximation is measured according to a similarity function between the original and the reconstructed images. This paper introduces a new method to tackle this issue. The method is based on functional networks, a powerful extension of neural networks that uses functions instead of the scalar weights typically found in standard neural networks. The method relies on an artificial network comprised of several functional networks, one for each of the contractive affine maps forming the IFS. The method is applied to an illustrative and challenging example of a fractal binary image exhibiting a complicated shape. The graphical and numerical results show that the method performs very well and is able to reconstruct the input image using IFS with high accuracy. The results also show that the method is not yet optimal and offers room for further improvementes_ES
dc.description.sponsorshipThis research was funded by the project PDE-GIR of the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska- Curie Grant Agreement No. 778035, and by the project TIN2017-89275-R, funded by the State Research Agency of the Spanish Ministry of Science and Innovation, MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”. Iztok Fister and Iztok Fister, Jr. are also grateful for the financial support from the Slovenian Research Agency (Research Core Funding No. P2-0042 and No. P2-0057, respectively).es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematics, 2022, 10, 1107es_ES
dc.subject.otherFunctional networkses_ES
dc.subject.otherArtificial neural networkses_ES
dc.subject.otherBinary imageses_ES
dc.subject.otherIterated function systemses_ES
dc.subject.otherCollage theoremes_ES
dc.subject.otherImage reconstructiones_ES
dc.titleIFS-based image reconstruction of binary images withfunctional networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.identifier.DOI10.3390/math10071107
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)