Mostrar el registro sencillo

dc.contributor.authorRomero Cuéllar, Jonathan
dc.contributor.authorHernández López, Mario R.
dc.contributor.authorPrieto Sierra, Cristina
dc.contributor.authorGastulo Tapia, Cristhian J.
dc.contributor.authorFrancés, Félix
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-15T10:27:12Z
dc.date.available2022-06-15T10:27:12Z
dc.date.issued2022-04-13
dc.identifier.issn2073-4441
dc.identifier.otherRTI2018-093717-B-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/25103
dc.description.abstractABSTRACT: This research develops an extension of the Model Conditional Processor (MCP), which merges clusters with Gaussian mixture models to offer an alternative solution to manage heteroscedastic errors. The new method is called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed post-processor were compared to the traditional MCP and MCP using a truncated Normal distribution (MCPt) by applying multiple deterministic and probabilistic verification indices. This research also assesses the GMCP's capacity to estimate the predictive uncertainty of the monthly streamflow under different climate conditions in the "SecondWorkshop on Model Parameter Estimation Experiment" (MOPEX) catchments distributed in the SE part of the USA. The results indicate that all three post-processors showed promising results. However, the GMCP post-processor has shown significant potential in generating more reliable, sharp, and accurate monthly streamflow predictions than the MCP and MCPt methods, especially in dry catchments. Moreover, the MCP and MCPt provided similar performances for monthly streamflow and better performances in wet catchments than in dry catchments. The GMCP constitutes a promising solution to handle heteroscedastic errors in monthly streamflow, therefore moving towards a more realistic monthly hydrological prediction to support effective decision-making in planning and managing water resources.es_ES
dc.description.sponsorshipThis research was funded by the department of Huila Scholarship Program No. 677 (Colombia) and Colciencias, the Vice-Presidents Research and Social Work office of the Universidad Surcolombiana, the Spanish Ministry of Science and Innovation through research project TETISCHANGE (ref. RTI2018-093717-B-I00). Cristina Prieto acknowledges the financial support from the Government of Cantabria through the Fénix Program.es_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceWater, 2022, 14, 1261es_ES
dc.subject.otherUncertainty analysises_ES
dc.subject.otherWater resourceses_ES
dc.subject.otherCluster analysises_ES
dc.subject.otherGaussian mixture modeles_ES
dc.subject.otherProbabilistic predictiones_ES
dc.titleTowards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/w14081261
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)