• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Informática y Electrónica
    • D30 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería Informática y Electrónica
    • D30 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A simulator for intelligent workload managers in heterogeneous clusters

    Ver/Abrir
    6.32.- Simulator for ... (704.8Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/25098
    DOI: 10.1109/CCGrid51090.2021.00029
    ISBN: 978-1-7281-9587-2
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Herrera Arcila, Adrián; Ibáñez Bolado, MarioAutoridad Unican; Stafford Fernández, EstebanAutoridad Unican; Bosque Orero, José LuisAutoridad Unican
    Fecha
    2021
    Derechos
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    21st IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing CCGrid 2021, Los Alamitos, CA, IEEE, 2021
    Enlace a la publicación
    https://doi.org/10.1109/CCGrid51090.2021.00029
    Palabras clave
    Resource Management
    Reinforced Learning
    Scheduling Simulation
    Heterogeneous Systems
    Resumen/Abstract
    Modern High Performance Computing (HPC) clusters often comprise a huge amount of computing resources of different capabilities, making them heterogeneous and difficult to manage. In addition, they must deal with a wide range of applications with different requirements. All this poses a great challenge to the workload managers that assign applications to resources. There are many new proposals to overcome this challenge, including some that employ Deep Reinforcement Learning (DRL) techniques. This paper proposes a novel simulation framework for the study of workload managers, that has been conceived to foster the study of workload managers based on DRL techniques. Its main features include the simulation of heterogeneous clusters based on multicore architectures, taking into account the contention in shared memory access and the energy consumption. A validation of the accuracy and performance of the simulator was made, compared with a real environment based on Slurm. This shows good accuracy of the results, with a relative error below 5% in makespan and 10% in energy consumption, and speedups up to 200.
    Colecciones a las que pertenece
    • D30 Congresos [57]
    • D30 Proyectos de Investigación [116]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España