Mostrar el registro sencillo

dc.contributor.authorJato Espino, Daniel 
dc.contributor.authorManchado del Val, Cristina 
dc.contributor.authorRoldán Valcarce, Alejandro 
dc.contributor.authorMoscardó García, Vanessa
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-09T16:01:45Z
dc.date.issued2022-07
dc.identifier.issn2212-0955
dc.identifier.otherRTI2018-094217-B-C32es_ES
dc.identifier.urihttp://hdl.handle.net/10902/25082
dc.description.abstractIncreased urbanisation is boosting the intensity and frequency of the Urban Heat Island (UHI) effect in highly developed cities. The advances in satellite measurement are facilitating the analysis of this phenomenon using Land Surface Temperature (LST) as an indicator of the Surface UHI (SUHI). Due to the spatial implications of using remote sensing data, this research developed ArcUHI, a Geographic Information System (GIS) add-in for modelling SUHI. The tool was designed in ArcGIS, which was bound with R to run machine learning algorithms in the background. ArcUHI was tested using the metropolitan area of Madrid (Spain) in 2006, 2012 and 2018 as a case study. The add-in was found to predict observed LST with high accuracy, especially when using Random Forest Regression (RFR). Building height and albedo were identified as the main drivers of SUHI, whose magnitude and extension increased with time. In view of these results, strategic roof and wall greening was suggested as a measure to mitigate the street canyon effect entailed by buildings and offset the heat retention capacity of built-up surfaces.es_ES
dc.description.sponsorshipThis research was funded by the Spanish Ministry of Science, Innovation, and Universities with funds from the State General Budget (PGE) and the European Regional Development Fund (ERDF), grant number RTI2018-094217-B-C32 (MCIU/AEI/FEDER, UE). Alejandro Roldán-Valcarce thanks the Spanish Ministry of Science, Innovation and Universities for funding his investigations at the University of Cantabria through a Researcher Formation Fellowship, grant number PRE2019-089450.es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier BVes_ES
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUrban Climate, 2022, 44, 101203es_ES
dc.subject.otherGeographic information system (GIS)es_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherSurface Urban Heat Island (SUHI)es_ES
dc.subject.otherUrban Heat Island effectes_ES
dc.subject.otherUrban planninges_ES
dc.titleArcUHI: a GIS add-in for automated modelling of the Urban Heat Island effect through machine learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.uclim.2022.101203es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094217-B-C32/ES/CARACTERIZACION MECANICA DE SECCIONES FILTRANTES Y ESTRATEGIAS DE LOCALIZACION INTELIGENTE PARA UN DRENAJE URBANO SOSTENIBLE A ESCALA CIUDAD/es_ES
dc.identifier.DOI10.1016/j.uclim.2022.101203
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license