Mostrar el registro sencillo

dc.contributor.authorDintén Herrero, Ricardo 
dc.contributor.authorZorrilla Pantaleón, Marta E. 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-09T14:32:55Z
dc.date.available2022-06-09T14:32:55Z
dc.date.issued2022
dc.identifier.issn1877-0509
dc.identifier.otherTIN2017-86520-C3-3-R
dc.identifier.urihttp://hdl.handle.net/10902/25075
dc.description.abstractThe Artificial Intelligence is one of the key enablers of the Industry 4.0. The building of learning models as well as their deployment in environments where the rate of data generation is high and their analysis must meet real time requirements lead to the need of selecting a big data platform suitable for this purpose. The heterogeneous and distributed nature of I4.0 environments where data becomes highly relevant requires the use of a data centric, distributed and scalable platform where the different applications are deployed as services. In this paper we present an I4.0 digital platform based on RAI4.0 reference architecture on which a predictive maintenance service has been built and deployed in Amazon Web Service cloud. Different strategies to build the predictor are described as well as the stages carried out for its construction. Finally, the predictor built with k-nearest algorithm is chosen because it is the fastest in producing an answer and its accuracy of 99.87% is quite close to the best model for our case study.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceProcedia Computer Science, 2022, 200, 1014-1023es_ES
dc.subject.otherBig data platformes_ES
dc.subject.otherData Stream Mininges_ES
dc.subject.otherPredictive Maintenancees_ES
dc.titleAn I4.0 data intensive platform suitable for the deployment ofmachine learning models: a predictive maintenance service casestudyes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.procs.2022.01.300es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.procs.2022.01.300
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España