Mostrar el registro sencillo

dc.contributor.authorBender, Philipp Florian
dc.contributor.authorBalceris, Christoph
dc.contributor.authorLudwig, Francis L.
dc.contributor.authorPosth, Oliver
dc.contributor.authorBogart, Lara Katrina
dc.contributor.authorSzczerba, Wojciech
dc.contributor.authorCastro, Alejandra
dc.contributor.authorNilsson, Lars
dc.contributor.authorCosto, R.
dc.contributor.authorGavilán, H.
dc.contributor.authorGonzález Alonso, David 
dc.contributor.authorPedro del Valle, Imanol de 
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.authorJohansson, Christer
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-06T13:50:00Z
dc.date.available2022-06-06T13:50:00Z
dc.date.issued2017-07
dc.identifier.issn1367-2630
dc.identifier.urihttp://hdl.handle.net/10902/24999
dc.description.abstractIn the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped.es_ES
dc.description.sponsorshipThis project has received funding from the European Commission Framework Programme 7 under grant agreement no 604448es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physicses_ES
dc.rights© 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaftes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceNew Journal of Physics, Vol. 19, Iss. 7, Art. Num. 073012 (2017)es_ES
dc.subject.otherMagnetic nanoparticleses_ES
dc.subject.otherNumerical inversiones_ES
dc.subject.otherSAXSes_ES
dc.subject.otherMagnetization measurementses_ES
dc.subject.otherAC susceptibilityes_ES
dc.subject.otherDistribution functionses_ES
dc.titleDistribution functions of magnetic nanoparticles determined by a numerical inversion methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1367-2630/aa73b4es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604448/EU/Nanometrology Standardization Methods for Magnetic Nanoparticles/NanoMag/es_ES
dc.identifier.DOI10.1088/1367-2630/aa73b4
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017 IOP Publishing Ltd and Deutsche Physikalische GesellschaftExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft