• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Planck 2018 results: VI. Cosmological parameters

    Ver/Abrir
    Planck2018resultsVI.pdf (7.709Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/24950
    DOI: https://doi.org/10.1051/0004-6361/201833910
    ISSN: 0004-6361
    ISSN: 1432-0746
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Aghanim, Nabila; Barreiro Vilas, Rita BelénAutoridad Unican; Diego Rodríguez, José MaríaAutoridad Unican; Fernández Cobos, RaúlAutoridad Unican; Herranz Muñoz, DiegoAutoridad Unican; Marcos Caballero, Airam Eduardo; Martínez González, Enrique; Vielva Martínez, PatricioAutoridad Unican
    Fecha
    2020
    Derechos
    © ESO 2020
    Publicado en
    Astronomy & Astrophysics. Vol. 641, Sep. 2020. A67
    Editorial
    EDP Sciences
    Enlace a la publicación
    https://doi.org/10.1051/0004-6361/201833910
    Palabras clave
    Cosmic background radiation
    Cosmological parameters
    Resumen/Abstract
    We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5? level. We find good consistency with the standard spatially-flat 6-parameter ?CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted ?base ?CDM? in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density ?ch2?=?0.120?±?0.001, baryon density ?bh2?=?0.0224?±?0.0001, scalar spectral index ns?=?0.965?±?0.004, and optical depth ??=?0.054?±?0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100?*?=?1.0411?±?0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-?CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H0?=?(67.4?±?0.5)??km?s?1?Mpc?1; matter density parameter ?m?=?0.315?±?0.007; and matter fluctuation amplitude ?8?=?0.811?±?0.006. We find no compelling evidence for extensions to the base-?CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be Neff?=?2.99?±?0.17, in agreement with the Standard Model prediction Neff?=?3.046, and find that the neutrino mass is tightly constrained to ?m??< ?0.12??eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ?CDM at over 2?, which pulls some parameters that affect the lensing amplitude away from the ?CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, ?K?=?0.001?±?0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0?=??1.03?±?0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0.002?< ?0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-?CDM cosmology are in excellent agreement with observations. The Planck base-?CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey?s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6?, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
    Colecciones a las que pertenece
    • D52 Artículos [1340]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España