• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Planck 2018 results: X. Constraints on inflation

    Ver/Abrir
    Planck2018resultsX.pdf (17.31Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/24949
    DOI: https://doi.org/10.1051/0004-6361/201833887
    ISSN: 0004-6361
    ISSN: 1432-0746
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Akrami, Y.; Barreiro Vilas, Rita BelénAutoridad Unican; Diego Rodríguez, José MaríaAutoridad Unican; Fernández Cobos, RaúlAutoridad Unican; Herranz Muñoz, DiegoAutoridad Unican; Marcos Caballero, Airam Eduardo; Martínez González, Enrique; Vielva Martínez, PatricioAutoridad Unican
    Fecha
    2020
    Derechos
    © Planck Collaboration 2020
    Publicado en
    Astronomy & Astrophysics. Vol 641, Sep 2020. A10
    Editorial
    EDP Sciences
    Enlace a la publicación
    https://doi.org/10.1051/0004-6361/201833887
    Palabras clave
    Inflation
    Cosmic background radiation
    Resumen/Abstract
    We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be ns?=?0.9649?±?0.0042 at 68% CL. We find no evidence for a scale dependence of ns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, r0.002?< ?0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r0.002?< ?0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V?(?) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005?Mpc?1???k???0.2?Mpc?1. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.
    Colecciones a las que pertenece
    • D52 Artículos [1340]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España