Mostrar el registro sencillo

dc.contributor.authorMoral Real, Gonzalo 
dc.contributor.authorOrtiz Imedio, Rafael 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorGorri Cirella, Daniel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-01T13:44:23Z
dc.date.available2022-06-01T13:44:23Z
dc.date.issued2022-05-11
dc.identifier.issn0888-5885
dc.identifier.issn1520-5045
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.otherPID2019-104369RB-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24947
dc.description.abstractThe recovery of energy and valuable compounds from exhaust gases in the iron and steel industry deserves special attention due to the large power consumption and CO2 emissions of the sector. In this sense, the hydrogen content of coke oven gas (COG) has positioned it as a promising source toward a hydrogen-based economy which could lead to economic and environmental benefits in the iron and steel industry. COG is presently used for heating purposes in coke batteries or furnaces, while in high production rate periods, surplus COG is burnt in flares and discharged into the atmosphere. Thus, the recovery of the valuable compounds of surplus COG, with a special focus on hydrogen, will increase the efficiency in the iron and steel industry compared to the conventional thermal use of COG. Different routes have been explored for the recovery of hydrogen from COG so far: i) separation/purification processes with pressure swing adsorption or membrane technology, ii) conversion routes that provide additional hydrogen from the chemical transformation of the methane contained in COG, and iii) direct use of COG as fuel for internal combustion engines or gas turbines with the aim of power generation. In this study, the strengths and bottlenecks of the main hydrogen recovery routes from COG are reviewed and discussed.es_ES
dc.description.sponsorshipThe authors are grateful for the funding of the Spanish AEI through the projects RTI2018-093310-B-I00 (MCIU/AEI/FEDER, UE) and PID2019-104369RB-I00 and the funding of the European Union through the project “HYLANTIC”-EAPA_204/2016, which is cofinanced by the European Regional Development Fund in the framework of the Interreg Atlantic program. R.O.-I. is grateful for the Concepción Arenal postgraduate research grant from the University of Cantabria.es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIndustrial and Engineering Chemistry Research, 2022, 61(18), 6106-6124es_ES
dc.titleHydrogen recovery from coke oven gas. Comparative analysis of technical alternativeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://doi.org/10.1021/acs.iecr.1c04668es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.iecr.1c04668
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 International