Mostrar el registro sencillo

dc.contributor.authorGutiérrez Gutiérrez, Jaime 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-06-01T07:26:04Z
dc.date.available2022-06-01T07:26:04Z
dc.date.issued2022-05
dc.identifier.issn1936-2447
dc.identifier.issn1936-2455
dc.identifier.urihttp://hdl.handle.net/10902/24935
dc.description.abstractIn this paper we study the linear congruential generator on elliptic curves from the cryptographic point of view. We show that if sufficiently many of the most significant bits of the composer and of three consecutive values of the sequence are given, then one can recover the seed and the composer (even in the case where the elliptic curve is private). The results are based on lattice reduction techniques and improve some recent approaches of the same security problem. We also estimate limits of some heuristic approaches, which still remain much weaker than those known for nonlinear congruential generators. Several examples are tested using implementations of ours algorithms.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCryptography and Communications, 2022, 14(3), 505-525es_ES
dc.subject.otherPseudoRandomes_ES
dc.subject.otherBit generatores_ES
dc.subject.otherElliptic curveses_ES
dc.subject.otherLattice based attackes_ES
dc.titleAttacking the linear congruential generator on elliptic curves via lattice techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s12095-021-00535-6es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s12095-021-00535-6
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International