dc.contributor.author | Akrami, Y. | |
dc.contributor.author | Barreiro Vilas, Rita Belén | |
dc.contributor.author | Casaponsa Galí, Biuse | |
dc.contributor.author | Diego Rodríguez, José María | |
dc.contributor.author | Fernández Cobos, Raúl | |
dc.contributor.author | Herranz Muñoz, Diego | |
dc.contributor.author | Marcos Caballero, Airam Eduardo | |
dc.contributor.author | Martínez González, Enrique | |
dc.contributor.author | Vielva Martínez, Patricio | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2022-05-16T14:59:03Z | |
dc.date.available | 2022-05-16T14:59:03Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0004-6361 | |
dc.identifier.issn | 1432-0746 | |
dc.identifier.uri | http://hdl.handle.net/10902/24840 | |
dc.description.abstract | We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3° regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of ?d?=?1.55? ± ?0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of ?s?=??3.1? ± ?0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects. | es_ES |
dc.description.sponsorship | The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http: //www.cosmos.esa.int/web/planck/planck-collaboration. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 687312, 776282 and 772253. | es_ES |
dc.format.extent | 74 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | EDP Sciences | es_ES |
dc.rights | © ESO | es_ES |
dc.source | Astronomy & Astrophysics. Vol. 641, Sep. 2020. A4 | es_ES |
dc.subject.other | ISM: general | es_ES |
dc.subject.other | Cosmology: observations | es_ES |
dc.subject.other | Cosmic background radiation | es_ES |
dc.subject.other | Difuse radiation | es_ES |
dc.subject.other | Galaxy: general | es_ES |
dc.title | Planck 2018 results: IV. Diffuse component separation | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1051/0004-6361/201833881 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/687312/EU/Ultimate modelling of Radio foregrounds: a key/RADIOFOREGROUNDS/ | es_ES |
dc.identifier.DOI | https://doi.org/10.1051/0004-6361/201833881 | |
dc.type.version | publishedVersion | es_ES |