Mostrar el registro sencillo

dc.contributor.authorBender, Philipp Florian
dc.contributor.authorFock, Jeppe
dc.contributor.authorfrandsen, Catherine
dc.contributor.authorHansen, Mikkel F.
dc.contributor.authorBalceris, Christoph
dc.contributor.authorLudwig, Frank
dc.contributor.authorPosth, Oliver
dc.contributor.authorWetterskog, Erik
dc.contributor.authorBogart, Lara K.
dc.contributor.authorSouthern, Paul
dc.contributor.authorSzczerba, Wojciech
dc.contributor.authorZeng, Lunjie
dc.contributor.authorWitte, Kerstin
dc.contributor.authorGrüttner, Cordula
dc.contributor.authorWestphal, Fritz
dc.contributor.authorHonecker, Dirk
dc.contributor.authorGonzález Alonso, David 
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.authorJohansson, Christer
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-05-11T16:18:59Z
dc.date.available2022-05-11T16:18:59Z
dc.date.issued2018
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/10902/24793
dc.description.abstractWe investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.es_ES
dc.description.sponsorshipThe authors thank the Institute Laue-Langevin for provision of neutron beamtime at instrument D33. This project has received funding from the European Commission Framework Programme 7 under Grant Agreement No. 604448 (NanoMag).es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.es_ES
dc.sourceJ. Phys. Chem. C 2018, 122, 5, 3068-3077es_ES
dc.titleRelating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.jpcc.7b11255es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604448/EU/Nanometrology Standardization Methods for Magnetic Nanoparticles/NanoMag/es_ES
dc.identifier.DOI10.1021/acs.jpcc.7b11255
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo