Mostrar el registro sencillo

dc.contributor.authorBender, Philipp Florian
dc.contributor.authorFock, Jeppe
dc.contributor.authorHansen, Mikkel Fougt
dc.contributor.authorBogart, Lara Katrina
dc.contributor.authorSouthern, Paul
dc.contributor.authorLudwig, Frank
dc.contributor.authorWiekhorst, Frank
dc.contributor.authorSzczerba, Wojciech
dc.contributor.authorZeng, Lunjie
dc.contributor.authorHeinke, David
dc.contributor.authorGehrke, Nicole
dc.contributor.authorFernández Díaz, M. T.
dc.contributor.authorGonzález Alonso, David 
dc.contributor.authorEspeso Martínez, José Ignacio 
dc.contributor.authorRodríguez Fernández, Jesús 
dc.contributor.authorJohansson, Christer I.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-05-11T15:53:53Z
dc.date.available2022-05-11T15:53:53Z
dc.date.issued2018-08-15
dc.identifier.issn0957-4484
dc.identifier.issn1361-6528
dc.identifier.urihttp://hdl.handle.net/10902/24790
dc.description.abstractClustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin (TM) R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin (TM) XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 10(5) rad s(-1), the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FSL, XL, XXL) excel in magnetic hyperthermia experiments.es_ES
dc.description.sponsorshipWe acknowledge the Institut Laue Langevin for provision of beamtime at the instrument D2B. This project (NanoMag) has received funding from the European Commission Framework Programme 7 under grant agreement no 604448.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherIOP Publishinges_ES
dc.rights© IOP Publishing. This is an author-created, un-copyedited version of an article accepted for publication/published in [insert name of journal]. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6528/aad67des_ES
dc.sourceNanotechnology, 2018, Vol. 29, Iss. 42, Art. Num. 425705es_ES
dc.subject.otherMagnetic nanoparticleses_ES
dc.subject.otherMulti-core particleses_ES
dc.subject.otherCore-clusterses_ES
dc.subject.otherMagnetic hyperthermiaes_ES
dc.subject.otherNanoflowerses_ES
dc.subject.otherNumerical inversiones_ES
dc.titleInfluence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1361-6528/aad67des_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/604448/EU/Nanometrology Standardization Methods for Magnetic Nanoparticles/NanoMag/es_ES
dc.identifier.DOI10.1088/1361-6528/aad67d
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo