Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.authorPascual Muñoz, Pablo 
dc.contributor.authorCastro Fresno, Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-05-11T08:37:32Z
dc.date.available2022-05-11T08:37:32Z
dc.date.issued2022
dc.identifier.issn0926-5805
dc.identifier.issn1872-7891
dc.identifier.urihttp://hdl.handle.net/10902/24783
dc.description.abstractABSTRACT: This work introduces the need to develop competitive, low-cost and applicable technologies to real roads to detect the asphalt condition by means of Machine Learning (ML) algorithms. Specifically, the most recent studies are described according to the data collection methods: images, ground penetrating radar (GPR), laser and optic fiber. The main models that are presented for such state-of-the-art studies are Support Vector Machine, Random Forest, Naïve Bayes, Artificial neural networks or Convolutional Neural Networks. For these analyses, the methodology, type of problem, data source, computational resources, discussion and future research are highlighted. Open data sources, programming frameworks, model comparisons and data collection technologies are illustrated to allow the research community to initiate future investigation. There is indeed research on ML-based pavement evaluation but there is not a widely used applicability by pavement management entities yet, so it is mandatory to work on the refinement of models and data collection methods.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync- nd/4.0/)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAutomation in Construction, 2022, 139, 4309es_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherRoad performancees_ES
dc.subject.otherData collection and road maintenancees_ES
dc.titleMachine learning algorithms for monitoring pavement performancees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.autcon.2022.104309es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.autcon.2022.104309
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync- nd/4.0/)Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync- nd/4.0/)