Mostrar el registro sencillo

dc.contributor.authorLosurdo, María
dc.contributor.authorGutiérrez, Yael
dc.contributor.authorSuvorova, Alexandra
dc.contributor.authorGiangregorio, Maria M.
dc.contributor.authorRubanov, Sergey
dc.contributor.authorBrown, April S.
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-05-10T14:54:12Z
dc.date.available2022-05-10T14:54:12Z
dc.date.issued2021
dc.identifier.issn1521-4095
dc.identifier.issn0935-9648
dc.identifier.otherPGC2018-096649-B-100es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24773
dc.description.abstractHydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2O3) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2O3 and reverse-oxygen spillover from α-Al2O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.es_ES
dc.description.sponsorshipThe authors thank all of the students and colleagues in their groups who were actively involved with nanoparticles research. M.L., Y.G., and F.M. have received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 899598—PHEMTRONICS. F.M. acknowledges MINECO (Spanish Ministry of Economy and Competitiveness, project PGC2018-096649-B-100).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-Blackwelles_ES
dc.rights© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbHes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceAdvanced Materials, 2021, 23 (29), 2100500es_ES
dc.subject.otherGalliumes_ES
dc.subject.otherHydrogen storagees_ES
dc.subject.otherMetal hydrideses_ES
dc.subject.otherOptical hydrogen sensinges_ES
dc.subject.otherOxygen reverse spilloveres_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherPlasmonicses_ES
dc.titleGallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spilloveres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/adma.202100500es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/adma.202100500
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbHExcepto si se señala otra cosa, la licencia del ítem se describe como © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH