Mostrar el registro sencillo

dc.contributor.authorPérez Arriaga, Jesús 
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorVielva Martínez, Luis Antonio 
dc.contributor.authorRamírez García, David
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-26T15:56:03Z
dc.date.available2022-04-26T15:56:03Z
dc.date.issued2022-04
dc.identifier.issn1536-1276
dc.identifier.otherTEC2017-86921-C2-1-Res_ES
dc.identifier.otherTEC2017-86921-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/24627
dc.description.abstractABSTRACT: Cooperative spectrum sensing has proved to be an effective method to improve the detection performance in cognitive radio systems. This work focuses on centralized cooperative schemes based on the soft fusion of the energy measurements at the cognitive radios (CRs). In these systems, the likelihood ratio test (LRT) is the optimal detection rule, but the sufficient statistic depends on the local signal-to-noise ratio (SNR) at the CRs, which are unknown in most practical cases. Therefore, the detection problem becomes a composite hypothesis test. The generalized LRT is the most popular approach in those cases. Unfortunately, in mobile environments, its performance is well below the LRT because the local energies are measured under varying SNRs. In this work, we present a new algorithm that jointly estimates the instantaneous SNRs and detects the presence of primary signals. Due to its adaptive nature, the algorithm is well suited for mobile scenarios where the local SNRs are time-varying. Simulation results show that its detection performance is close to the LRT in realistic conditions.es_ES
dc.description.sponsorshipThis work was supported in part by the Ministerio de Ciencia, Innovación y Universidades, jointly with European Commission [European Regional Development Fund (ERDF)], under Grant TEC2017-86921-C2-1-R and Grant TEC2017-86921-C2-2-R (CAIMAN) and in part by The Comunidad de Madrid under Grant Y2018/TCS-4705 (PRACTICO-CM).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Wireless Communications, 2022, 21(4), 2521-2533es_ES
dc.subject.otherCooperative spectrum sensinges_ES
dc.subject.otherEnergy detectiones_ES
dc.subject.otherExpectation-maximization (EM) algorithmses_ES
dc.subject.otherMaximum likelihoodes_ES
dc.subject.otherProbabilistic mixture modelses_ES
dc.titleOnline detection and SNR estimation in cooperative spectrum sensinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TWC.2021.3113089es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/TWC.2021.3113089
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo