dc.contributor.author | Velasco González, David | |
dc.contributor.author | López Martín, Juan Manuel | |
dc.contributor.author | Pazó Bueno, Diego Santiago | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2022-04-20T15:29:15Z | |
dc.date.available | 2022-04-20T15:29:15Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.issn | 1550-2376 | |
dc.identifier.issn | 2470-0045 | |
dc.identifier.issn | 2470-0053 | |
dc.identifier.other | FIS2016-74957-P | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/24620 | |
dc.description.abstract | Globally coupled maps (GCMs) are prototypical examples of high-dimensional dynamical systems. Interestingly, GCMs formed by an ensemble of weakly coupled identical chaotic units generically exhibit a hyperchaotic “turbulent” state. A decade ago, Takeuchi et al. [Phys. Rev. Lett. 107, 124101 (2011)] theorized that in turbulent GCMs the largest Lyapunov exponent (LE), λ(N), depends logarithmically on the system size N: λ∞−λ(N)≃c/lnN. We revisit the problem and analyze, by means of analytical and numerical techniques, turbulent GCMs with positive multipliers to show that there is a remarkable lack of universality, in conflict with the previous prediction. In fact, we find a power-law scaling λ∞−λ(N)≃c/Nγ, where γ is a parameter-dependent exponent in the range 0<γ≤1. However, for strongly dissimilar multipliers, the LE varies with N in a slower fashion, which is here numerically explored. Although our analysis is only valid for GCMs with positive multipliers, it suggests that a universal convergence law for the LE cannot be taken for granted in general GCMs. | es_ES |
dc.description.sponsorship | D.V. acknowledges support by Agencia Estatal de Investigación (Spain), and European Social Fund (EU) under Grant No. BES-2017-081808 of the FPI Programme. We acknowledge support by Agencia Estatal de Investigación (Spain), and European Regional Development Fund (EU) under Project No. FIS2016-74957-P (AEI/FEDER, EU). | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.rights | © American Physical Society | es_ES |
dc.source | Physical Review E. Vol. 104, 3-September 2021, 034216 | es_ES |
dc.title | Nonuniversal large-size asymptotics of the Lyapunov exponent in turbulent globally coupled maps | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1103/PhysRevE.104.034216 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | https://doi.org/10.1103/PhysRevE.104.034216 | |
dc.type.version | acceptedVersion | es_ES |