Mostrar el registro sencillo

dc.contributor.authorPérez Pavón, Borja 
dc.contributor.authorStafford Fernández, Esteban 
dc.contributor.authorBosque Orero, José Luis 
dc.contributor.authorBeivide Palacio, Ramón 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-19T15:28:13Z
dc.date.available2022-04-19T15:28:13Z
dc.date.issued2021-11
dc.identifier.issn0743-7315
dc.identifier.issn1096-0848
dc.identifier.otherPID2019-105660RB-C22es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24611
dc.description.abstractA challenge that heterogeneous system programmers face is leveraging the performance of all the devices that integrate the system. This paper presents Sigmoid, a new load balancing algorithm that efficiently co-executes a single OpenCL data-parallel kernel on all the devices of heterogeneous systems. Sigmoid splits the workload proportionally to the capabilities of the devices, drastically reducing response time and energy consumption. It is designed around several features; it is dynamic, adaptive, guided and effortless, as it does not require the user to give any parameter, adapting to the behaviourof each kernel at runtime. To evaluate Sigmoid's performance, it has been implemented in Maat, a system abstraction library. Experimental results with different kernel types show that Sigmoid exhibits excellent performance, reaching a utilization of 90%, together with energy savings up to 20%, always reducing programming effort compared to OpenCL, and facilitating the portability to other heterogeneous machines.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Science and Technology Commission under contract PID2019-105660RB-C22 and the European HiPEAC Network of Excellence.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Parallel and Distributed Computing, 2021, 157, 30 - 42es_ES
dc.subject.otherHeterogeneous systemses_ES
dc.subject.otherLoad balancinges_ES
dc.subject.otherAdaptabilityes_ES
dc.subject.otherOpenCLes_ES
dc.subject.otherEnergy efficiencyes_ES
dc.titleSigmoid: An auto-tuned load balancing algorithm for heterogeneous systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jpdc.2021.06.003es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jpdc.2021.06.003
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).