A front-fixing method for American option pricing on zero-coupon bond under the Hull and White model
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/24606DOI: 10.1002/mma.7505
ISSN: 0170-4214
ISSN: 1099-1476
Registro completo
Mostrar el registro completo DCFecha
2022-04Derechos
Attribution-NonCommercial 4.0 International
Publicado en
Mathematical Methods in the Applied Sciences, 2022, 45(6), 3334-3344
Editorial
John Wiley & Sons
Enlace a la publicación
Palabras clave
American option pricing
Finite difference method
Front-fixing method
Numerical simulations
Zero-coupon bond
Resumen/Abstract
ABSTRACT: A new efficient numerical method is proposed for valuation of American option on zero-coupon bond using Hull and White model. By applying the front-fixing transformation suggested by Holmes and Yang, the original free boundary problem is transformed into a new fixed boundary partial differential equation (PDE) problem, where the optimal stopping boundary is one of the unknowns of the problem. The numerical finite difference scheme for the transformed problem is constructed. Stability and convergence rate is studied empirically. Numerical simulation of the computation of both the option price and the optimal stopping boundary are illustrated with examples and the comparison with the Hull and White tree method.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]