Mostrar el registro sencillo

dc.contributor.authorZhukova Zhukova, Valentina
dc.contributor.authorCorte León, Paula
dc.contributor.authorBlanco Aranguren, Juan María
dc.contributor.authorIpatov, Mihail
dc.contributor.authorGonzález Legarreta, Lorena 
dc.contributor.authorGonzalez Villegas, Alvaro
dc.contributor.authorZhukov Egorova, Arkady Pavlovich
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-19T14:01:37Z
dc.date.available2022-04-19T14:01:37Z
dc.date.issued2022-01-07
dc.identifier.issn2227-9040
dc.identifier.otherPGC2018-099530-B-C31es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24603
dc.description.abstractABSTRACT: Amorphous magnetic microwires can be suitable for a variety of technological applications due to their excellent magnetic softness and giant magnetoimpedance (GMI) effect. Several approaches for optimization of soft magnetic properties and GMI effect of magnetic microwires covered with an insulating, flexible, and biocompatible glass coating with tunable magnetic properties are overviewed. The high GMI effect and soft magnetic properties, achieved even in as-prepared Co-rich microwires with a vanishing magnetostriction coefficient, can be further improved by appropriate heat treatment (including stress-annealing and Joule heating). Although as-prepared Fe-rich amorphous microwires exhibit low GMI ratio and rectangular hysteresis loops, stress-annealing, Joule heating, and combined stress-annealed followed by conventional furnace annealing can substantially improve the GMI effect (by more than an order of magnitude).es_ES
dc.description.sponsorshipThis work was funded by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by EU under “INFINITE”(Horizon 2020) project, by the Government of the Basque Country, under PIBA 2018-44, PUE_2021_1_0009, and Elkartek (CEMAP and AVANSITE) projects, by the Diputación Foral de Gipuzkoa in the frame of Programa “Red guipuzcoana de Ciencia, Tecnología e Innovación 2021” under 2021-CIEN-000007-01 project and by the University of Basque Country, under the COLAB20/15 project.es_ES
dc.format.extent28 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceChemosensors, 2022, 10(1), 26es_ES
dc.source1st International Electronic Conference on Chemical Sensors and Analytical Chemistry (CSAC), Online, 2021es_ES
dc.subject.otherMagnetic microwireses_ES
dc.subject.otherSensor applicationses_ES
dc.subject.otherPost-processinges_ES
dc.subject.otherMagnetic anisotropyes_ES
dc.subject.otherMagnetostrictiones_ES
dc.titleDevelopment of magnetically soft amorphous microwires for technological applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/chemosensors10010026
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.