Mostrar el registro sencillo

dc.contributor.authorBeltrán Álvarez, Carlos 
dc.contributor.authorBreiding, Paul
dc.contributor.authorVannieuwenhoven, Nick
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-08T14:40:21Z
dc.date.available2022-04-08T14:40:21Z
dc.date.issued2022-02
dc.identifier.issn1615-3375
dc.identifier.issn1615-3383
dc.identifier.otherMTM2017-83816-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/24539
dc.description.abstractThe tensor rank decomposition, or canonical polyadic decomposition, is the decomposition of a tensor into a sum of rank-1 tensors. The condition number of the tensor rank decomposition measures the sensitivity of the rank-1 summands with respect to structured perturbations. Those are perturbations preserving the rank of the tensor that is decomposed. On the other hand, the angular condition number measures the perturbations of the rank-1 summands up to scaling. We show for random rank-2 tensors that the expected value of the condition number is infinite for a wide range of choices of the density. Under a mild additional assumption, we show that the same is true for most higher ranks r?3r?3 as well. In fact, as the dimensions of the tensor tend to infinity, asymptotically all ranks are covered by our analysis. On the contrary, we show that rank-2 tensors have finite expected angular condition number. Based on numerical experiments, we conjecture that this could also be true for higher ranks. Our results underline the high computational complexity of computing tensor rank decompositions. We discuss consequences of our results for algorithm design and for testing algorithms computing tensor rank decompositions.es_ES
dc.description.sponsorshipWe thank the reviewers for helpful suggestions. Part of this work was made while the second and third author were visiting the Universidad de Cantabria, supported by the funds of Grant 21.SI01.64658 (Banco Santander and Universidad de Cantabria), Grant MTM2017-83816-P from the Spanish Ministry of Science. The third author was additionally supported by the FWO Grant for a long stay abroad V401518N. We thank these institutions for their support.es_ES
dc.format.extent59 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rights© The Author(s) 2022es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.sourceFoundations of Computational Mathematics, 2022es_ES
dc.subject.otherTensor decompositiones_ES
dc.subject.otherCondition numberes_ES
dc.subject.otherAverage analysises_ES
dc.titleThe Average Condition Number of Most Tensor Rank Decomposition Problems is Infinitees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10208-022-09551-1es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83816-P/ES/CONDICIONAMIENTO Y COMPLEJIDAD/
dc.identifier.DOI10.1007/s10208-022-09551-1
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s) 2022Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2022