dc.contributor.author | Nieto Reyes, Alicia | |
dc.contributor.author | Battey, Heather | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2022-04-08T14:33:48Z | |
dc.date.available | 2022-04-08T14:33:48Z | |
dc.date.issued | 2021-07 | |
dc.identifier.issn | 0047-259X | |
dc.identifier.issn | 1095-7243 | |
dc.identifier.other | MTM2017-86061-C2-2-P (to AN-R) | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/24538 | |
dc.description.abstract | Numerous problems remain in the construction of statistical depth for functional data. Issues stem largely from the absence of a well-conceived notion of symmetry. The present paper proposes a topologically valid notion of symmetry for distributions on functional metric spaces and a corresponding notion of depth. The latter is shown to satisfy the axiomatic definition of functional depth introduced by Nieto-Reyes and Battey (2016). | es_ES |
dc.description.sponsorship | The work was supported by a UK Engineering and Physical Sciences Research Council research fellowship (to HSB) and a Spanish Ministerio de Ciencia, Innovación y Universidades grant MTM2017-86061-C2-2-P (to AN-R). | es_ES |
dc.format.extent | 16 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Academic Press Inc. | es_ES |
dc.rights | © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/). | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Multivariate Analysis, Volume 184, July 2021 | es_ES |
dc.subject.other | Functional data analysis | es_ES |
dc.subject.other | Statistical depth | es_ES |
dc.subject.other | Symmetry | es_ES |
dc.title | A topologically valid construction of depth for functional data | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.jmva.2021.104738 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.jmva.2021.104738 | |
dc.type.version | publishedVersion | es_ES |