Mostrar el registro sencillo

dc.contributor.authorHe, Jiao
dc.contributor.authorGranero Belinchón, Rafael 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-08T14:00:41Z
dc.date.available2022-09-13T00:36:35Z
dc.date.issued2021-09
dc.identifier.issn1553-5231
dc.identifier.issn1078-0947
dc.identifier.otherPID2019-109348GA-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24534
dc.description.abstractIn this article, we consider a non-local variant of the KuramotoSivashinsky equation in three dimensions (2D interface). Besides showing the global wellposedness of this equation we also obtain some qualitative properties of the solutions. In particular, we prove that the solutions become analytic in the spatial variable for positive time, the existence of a compact global attractor and an upper bound on the number of spatial oscillations of the solutions. We observe that such a bound is particularly interesting due to the chaotic behavior of the solutions.es_ES
dc.description.sponsorshipThe authors would like to express sincere gratitude to Ruben Tomlin for calling our attention to an error in our first manuscript. J.H would like to thank Vladimir Georgiev for helpful discussions, and also thank Lorenzo Brandolese and Drago¸s Iftimie for providing suggestions and comments. R.G-B was supported by the LABEX MILYON (ANR-10-LABX-0070) of Universit´e de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) and by the project “Mathematical Analysis of Fluids and Applications” with reference PID2019-109348GA-I00/AEI/10.13039/501100011033 and acronym “MAFyA” funded by Agencia Estatal de Investigación and the Ministerio de Ciencia, Innovacion y Universidades (MICIU). J.H was partially funded by the ANR project Dyficolti ANR-13-BS01-0003-01 and is supported by the Sophie Germain program of the Fondation Math´ematique Jacques Hadamard. The authors would like to thank the referee’s remarks and suggestionses_ES
dc.format.extent24 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Mathematical Scienceses_ES
dc.rightsThis is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems - Series A following peer review. The definitive publisher-authenticated version Discrete and Continuous Dynamical Systems - Series A, 41 (9), 4041 - 4064 is available online at: http://dx.doi.org/10.3934/dcds.2021027es_ES
dc.sourceDiscrete and Continuous Dynamical Systems - Series A, 41 (9), 4041 - 4064es_ES
dc.subject.otherKuramoto-Sivashinsky equationes_ES
dc.subject.otherGlobal wellposednesses_ES
dc.subject.otherAnalyticityes_ES
dc.subject.otherGlobal attractores_ES
dc.subject.otherUpper bound on the number of spatial oscillationses_ES
dc.titleOn the dynamics of 3d electrified falling filmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3934/dcds.2021027


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo