Mostrar el registro sencillo

dc.contributor.authorFernández-Bertolin, Aingeru
dc.contributor.authorRoncal, Luz
dc.contributor.authorRüland, Angkana
dc.contributor.authorStan, Diana 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-07T16:23:35Z
dc.date.available2022-04-07T16:23:35Z
dc.date.issued2021-12
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.otherPID2020-113156GB-I00es_ES
dc.identifier.otherPGC2018-094528-B-I00es_ES
dc.identifier.otherPGC2018-094522-B-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24528
dc.description.abstractWe prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold under suitable regularity assumptions. As a key auxiliary result which might be of independent interest we present a Carleman estimate for these discrete operators.es_ES
dc.description.sponsorshipAcknowledgements: The first author is supported by ERCEA Advanced Grant 2014 669689—HADE, by the project PGC2018-094528-B-I00 (AEI/FEDER, UE) and acronym “IHAIP”, and by the Basque Government through the project IT1247-19. The second author is supported by the Basque Government through the BERC 2018-2021 program, by the Spanish Ministry of Science, Innovation, and Universities MICINNU: BCAM Severo Ochoa excellence accreditation SEV-2017-2018 and through project PID2020-113156GB-I00. She also acknowledges the RyC project RYC2018-025477-I and IKERBASQUE. The fourth author is supported by the Spanish research project PGC2018-094522-B-I00 from the MICINNU and by the project VP42 “Ecuaciones de evolución no lineales y no locales y aplicaciones” from the Cons. de Univ., Igualdad, Cultura y Deporte, Cantabria, Spain. The authors would like to thank Sylvain Ervedoza for pointing out the optimal scaling in τh ≤ δ0 in the Carleman inequality.es_ES
dc.format.extent28 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCalculus of Variations and Partial Differential Equations, 2021, 60 (6), 239es_ES
dc.titleDiscrete Carleman estimates and three balls inequalitieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00526-021-02098-zes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00526-021-02098-z
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International