Surjectivity of the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2021-10Derechos
Attribution 4.0 International
Publicado en
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2021, 115 (4), 181
Editorial
Springer
Enlace a la publicación
Palabras clave
Carleman ultraholomorphic classes
Asymptotic expansions
Borel–Ritt–Gevrey theorem
Laplace transform
Regular variation
Resumen/Abstract
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman?Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dyn?kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez, and by the authors, and show the prominent role played by an index, associated with the sequence, that was introduced by V. Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, stemming from his study of the surjectivity of the moment mapping in general Gelfand?Shilov spaces.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]