Mostrar el registro sencillo

dc.contributor.authorHallin, Marc
dc.contributor.authorBarrio Tellado, Eustasio del
dc.contributor.authorCuesta Albertos, Juan Antonio 
dc.contributor.authorMatran Bea, Carlos
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-04-07T13:39:47Z
dc.date.available2022-04-07T13:39:47Z
dc.date.issued2021-04
dc.identifier.issn0090-5364
dc.identifier.issn2168-8966
dc.identifier.otherMTM2017-86061-C2es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24521
dc.description.abstractUnlike the real line, the real space Rd, for d 2, is not canonically ordered. As a consequence,such fundamental univariate concepts as quantileand distribution functions and their empirical counterparts, involving ranksand signs, do not canonically extend to the multivariate context. Palliating that lack of a canonical ordering has been an open problem for more than half a century, generating an abundant literature and motivating, among others, the development of statistical depth and copula-based methods. We show that, unlike the many definitions proposed in the literature, the measure transportation-based ranks and signs introduced in Chernozhukov, Galichon, Hallin and Henry (Ann. Statist. 45 (2017) 223-256) enjoy all the properties that make univariate ranks a successful tool for semiparametric inference. Related with those ranks, we propose a new center-outward definition of multivariate distribution and quantile functions, along with their empirical counterparts, for which we establish a Glivenko-Cantelli result. Our approach is based on McCann (Duke Math. J. 80 (1995) 309-323) and our results do not require any moment assumptions. The resulting ranks and signs are shown to be strictly distribution-free and essentially maximal ancillary in the sense of Basu (Sankhya 21 (1959) 247-256) which, in semiparametric models involving noise with unspecified density, can be interpreted as a finite-sample form of semiparametric efficiency. Although constituting a sufficient summary of the sample, empirical center-outward distribution functions are defined at observed values only. A continuous extension to the entire d-dimensional space, yielding smooth empirical quantile contours and sign curves while preserving the essential monotonicity and Glivenko- Cantelli features of the concept, is provided. A numerical study of the resulting empirical quantile contours is conducted.es_ES
dc.description.sponsorshipThis paper results from the merging of Hallin (2017) and del Barrio, Cuesta-Albertos, Hallin and Matrán (2018). Eustasio del Barrio, Juan Cuesta-Albertos and Carlos Matrán are supported in part by FEDER, Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2; Eustasio del Barrio and Carlos Matrán also acknowledge the support of the Junta de Castilla y León, grants VA005P17 and VA002G18. Marc Hallin thanks Marc Henry for guiding his first steps into the subtleties of measure transportation.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Mathematical Statisticses_ES
dc.rights© Institute of Mathematical Statisticses_ES
dc.sourceThe Annals of Statistics, 2021, 49 (2), 1139-1165es_ES
dc.subject.otherMultivariate distribution functiones_ES
dc.subject.otherMultivariate quantileses_ES
dc.subject.otherMultivariate rankses_ES
dc.subject.otherMultivariate signses_ES
dc.subject.otherGlivenko–Cantelli theoremes_ES
dc.subject.otherBasu theoremes_ES
dc.subject.otherDistribution-freenesses_ES
dc.subject.otherAncillarityes_ES
dc.subject.otherCyclical monotonicityes_ES
dc.titleDistribution and quantile functions, ranks and signs in dimension d: a measure transportation approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1214/20-AOS1996es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1214/20-AOS1996
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo