• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach

    Ver/Abrir
    Hallin et al.pdf (1.480Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/24521
    DOI: 10.1214/20-AOS1996
    ISSN: 0090-5364
    ISSN: 2168-8966
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Hallin, Marc; Barrio Tellado, Eustasio del; Cuesta Albertos, Juan AntonioAutoridad Unican; Matran Bea, Carlos
    Fecha
    2021-04
    Derechos
    © Institute of Mathematical Statistics
    Publicado en
    The Annals of Statistics, 2021, 49 (2), 1139-1165
    Editorial
    Institute of Mathematical Statistics
    Enlace a la publicación
    https://doi.org/10.1214/20-AOS1996
    Palabras clave
    Multivariate distribution function
    Multivariate quantiles
    Multivariate ranks
    Multivariate signs
    Glivenko–Cantelli theorem
    Basu theorem
    Distribution-freeness
    Ancillarity
    Cyclical monotonicity
    Resumen/Abstract
    Unlike the real line, the real space Rd, for d 2, is not canonically ordered. As a consequence,such fundamental univariate concepts as quantileand distribution functions and their empirical counterparts, involving ranksand signs, do not canonically extend to the multivariate context. Palliating that lack of a canonical ordering has been an open problem for more than half a century, generating an abundant literature and motivating, among others, the development of statistical depth and copula-based methods. We show that, unlike the many definitions proposed in the literature, the measure transportation-based ranks and signs introduced in Chernozhukov, Galichon, Hallin and Henry (Ann. Statist. 45 (2017) 223-256) enjoy all the properties that make univariate ranks a successful tool for semiparametric inference. Related with those ranks, we propose a new center-outward definition of multivariate distribution and quantile functions, along with their empirical counterparts, for which we establish a Glivenko-Cantelli result. Our approach is based on McCann (Duke Math. J. 80 (1995) 309-323) and our results do not require any moment assumptions. The resulting ranks and signs are shown to be strictly distribution-free and essentially maximal ancillary in the sense of Basu (Sankhya 21 (1959) 247-256) which, in semiparametric models involving noise with unspecified density, can be interpreted as a finite-sample form of semiparametric efficiency. Although constituting a sufficient summary of the sample, empirical center-outward distribution functions are defined at observed values only. A continuous extension to the entire d-dimensional space, yielding smooth empirical quantile contours and sign curves while preserving the essential monotonicity and Glivenko- Cantelli features of the concept, is provided. A numerical study of the resulting empirical quantile contours is conducted.
    Colecciones a las que pertenece
    • D21 Artículos [417]
    • D21 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España