Mostrar el registro sencillo

dc.contributor.authorWoodward, Guy
dc.contributor.authorMorris, Olivia
dc.contributor.authorBarquín Ortiz, José 
dc.contributor.authorBelgrano, Andrea
dc.contributor.authorBull, Colin
dc.contributor.authorEyto, Elvira de
dc.contributor.authorFriberg, Nikolai
dc.contributor.authorGuðbergsson, Guðni
dc.contributor.authorLayer-Dobra, Katrin
dc.contributor.authorLauridsen, Rasmus B.
dc.contributor.authorLewis, Hannah M.
dc.contributor.authorMcGinnity, Philip
dc.contributor.authorPawar, Samraat
dc.contributor.authorRosindell, James
dc.contributor.authorO’Gorman, Eoin J.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-03-28T18:28:27Z
dc.date.available2022-03-28T18:28:27Z
dc.date.issued2021-12
dc.identifier.issn2296-701X
dc.identifier.urihttp://hdl.handle.net/10902/24421
dc.description.abstractABSTRACT: Populations of Atlantic salmon are crashing across most of its natural range: understanding the underlying causes and predicting these collapses in time to intervene effectively are urgent ecological and socioeconomic priorities. Current management techniques rely on phenomenological analyses of demographic population time-series and thus lack a mechanistic understanding of how and why populations may be declining. New multidisciplinary approaches are thus needed to capitalize on the long-term, large-scale population data that are currently scattered across various repositories in multiple countries, as well as marshaling additional data to understand the constraints on the life cycle and how salmon operate within the wider food web. Here, we explore how we might combine data and theory to develop the mechanistic models that we need to predict and manage responses to future change. Although we focus on Atlantic salmon?given the huge data resources that already exist for this species?the general principles developed here could be applied and extended to many other species and ecosystems.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Media S.A.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceFrontiers in Ecology and Evolution 2021, 9, 675261es_ES
dc.subject.otherAtlantic salmon (Salmo salar)es_ES
dc.subject.otherMarine and freshwater fisherieses_ES
dc.subject.otherEcosystem-based management (EBM)es_ES
dc.subject.otherMatrix projection modelses_ES
dc.subject.otherMetabolic theory of ecology (MTE)es_ES
dc.subject.otherLife-stage modelses_ES
dc.subject.otherSize structurees_ES
dc.titleUsing Food Webs and Metabolic Theory to Monitor, Model, and Manage Atlantic Salmon- A Keystone Species Under Threates_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3389/fevo.2021.675261es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3389/fevo.2021.675261
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International