Mostrar el registro sencillo

dc.contributor.authorPérez Carabaza, Sara 
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.authorCruz García, Jesús Manuel de la
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-03-28T16:11:28Z
dc.date.available2022-03-28T16:11:28Z
dc.date.issued2018-01
dc.identifier.issn1872-9681
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/10902/24413
dc.description.abstractThis paper presents a new approach based on ant colony optimization (ACO) to determine the trajectories of a fleet of unmanned air vehicles (UAVs) looking for a lost target in the minimum possible time. ACO is especially suitable for the complexity and probabilistic nature of the minimum time search (MTS) problem, where a balance between the computational requirements and the quality of solutions is needed. The presented approach includes a new MTS heuristic that exploits the probability and spatial properties of the problem, allowing our ant based algorithm to quickly obtain high-quality high-level straight-segmented UAV trajectories. The potential of the algorithm is tested for different ACO parameterizations, over several search scenarios with different characteristics such as number of UAVs, or target dynamics and location distributions. The statistical comparison against other techniques previously used for MTS (ad hoc heuristics, cross entropy optimization, bayesian optimization algorithm and genetic algorithms) shows that the new approach outperforms the others.es_ES
dc.description.sponsorshipThis work was supported by Airbus under the SAVIER AER-30459 project.es_ES
dc.format.extent37 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Soft Computing, 2018, 62, 789-806es_ES
dc.subject.otherAnt Colony Optimizationes_ES
dc.subject.otherProbabilistic Path Planninges_ES
dc.subject.otherUAVses_ES
dc.subject.otherMinimum Time Searches_ES
dc.titleAnt colony optimization for multi-UAV minimum time search in uncertain domainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.asoc.2017.09.009es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.asoc.2017.09.009
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license