Mostrar el registro sencillo

dc.contributor.authorPérez Carabaza, Sara 
dc.contributor.authorBoydell, Oisín
dc.contributor.authorO'Connell, Jerome
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-03-28T07:03:49Z
dc.date.available2022-03-28T07:03:49Z
dc.date.issued2021-07-02
dc.identifier.issn1931-3195
dc.identifier.urihttp://hdl.handle.net/10902/24388
dc.description.abstractThe monitoring of threatened habitats is a key objective of European environmental policies. Due to the high cost of current field-based habitat mapping techniques, there is keen interest in proposing solutions that can reduce cost through increased levels of automation. Our study aims to propose a habitat mapping solution that benefits both from the merits of convolutional neural networks (CNNs) for image classification tasks, as well as from the high spatial, spectral, and multitemporal unmanned aerial vehicle image data, which shows great potential for accurate vegetation classification. The proposed CNN-based method uses multitemporal multispectral aerial imagery for the classification of threatened coastal habitats in the Maharees (Ireland) and shows a high level of classification accuracy.es_ES
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Grant Agreement No. 847402. The authors would like to thank the EPA-funded iHabiMap project for providing the data used in this work. We thank the anonymous reviewers whose comments and suggestions helped improve and clarify this manuscript. The authors declare no conflicts of interestes_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2021 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceJournal of Applied Remote Sensing, 2021, 15(4), 042406es_ES
dc.subject.otherHabitat mappinges_ES
dc.subject.otherUnmanned aerial vehicle imageryes_ES
dc.subject.otherMultitemporal imageryes_ES
dc.subject.otherConvolutional neural networkses_ES
dc.titleHabitat classification using convolutional neural networks and multitemporal multispectral aerial imageryes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1117/1.JRS.15.042406es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/1.JRS.15.042406
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo