• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Habitat classification using convolutional neural networks and multitemporal multispectral aerial imagery

    Ver/Abrir
    HabitatClassificatio ... (1.329Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/24388
    DOI: 10.1117/1.JRS.15.042406
    ISSN: 1931-3195
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pérez Carabaza, SaraAutoridad Unican; Boydell, Oisín; O'Connell, Jerome
    Fecha
    2021-07-02
    Derechos
    © 2021 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Journal of Applied Remote Sensing, 2021, 15(4), 042406
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    https://doi.org/10.1117/1.JRS.15.042406
    Palabras clave
    Habitat mapping
    Unmanned aerial vehicle imagery
    Multitemporal imagery
    Convolutional neural networks
    Resumen/Abstract
    The monitoring of threatened habitats is a key objective of European environmental policies. Due to the high cost of current field-based habitat mapping techniques, there is keen interest in proposing solutions that can reduce cost through increased levels of automation. Our study aims to propose a habitat mapping solution that benefits both from the merits of convolutional neural networks (CNNs) for image classification tasks, as well as from the high spatial, spectral, and multitemporal unmanned aerial vehicle image data, which shows great potential for accurate vegetation classification. The proposed CNN-based method uses multitemporal multispectral aerial imagery for the classification of threatened coastal habitats in the Maharees (Ireland) and shows a high level of classification accuracy.
    Colecciones a las que pertenece
    • D20 Artículos [468]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España